Phase Transitions, Gravitational Waves, and Composite Dark Matter

Pedro Schwaller (DESY)

Lattice for BSM Physics 2016 Argonne National Laboratory April 22, 2016

Outline

- DM from confining SU(N)
- First order Phase Transitions
 - PT dynamics from lattice?
- Gravitational Waves from FOPT
- Detection Ground, Space, PTA

Composite DM

- Alternative to elementary WIMP models
- Phenomenologically viable, "generic" possibility in presence of hidden sectors
- Some nice features:
 - DM stability, mass scale
 - Symmetric component annihilation for ADM
 - Self-interactions

Dark QCD

- Models I'm interested in here
- Nonabelian SU(N) dark sector, confinement scale Λ_d
- n_f light/massless flavours

$$n_f = 0$$

Glueball DM

PT from center symmetry restoration

$$n_f > 0$$

Dark Baryons or Dark Pions

Chiral Symmetry Breaking

The Dark Phase Transition

Phase Transition

- SU(N) dark sectors well motivated
- Confinement/chiral symmetry breaking phase transition at scale Λ_d
 - ightharpoonup DM: $\Lambda_d \sim M_{
 m DM}$ (MeV 100 TeV)
 - Naturalness: $\Lambda_d \sim {\rm few} \times \Lambda_{\rm QCD}$
- First order PT in large class of models
- Still possible if LHC finds no new physics

QCD Phase Diagram

Phase Diagram II

SU(N) - PT

- Consider $SU(N_d)$ with n_f massless flavours
- PT is first order for
 - $N_d \ge 3$, $n_f = 0$
 - $N_d \ge 3$, $3 \le n_f < 4N_d$

Svetitsky, Yaffe, 1982 M. Panero, 2009

Pisarski, Wilczek, 1983

- Not for:
 - $n_f = 1$ (no global symmetry, no PT)
 - $n_f = 2$ (not yet known)

SU(N) - PT 2

- One more parameter:
 ⊖ angle
- Effect on PT not well studied

M. Anber, 2013 Garcia-Garcia, Lasenby, March-Russell, 2015

• N_d , n_f dependence of PT strength?

Panero, 2009

- Finite density/chemical potentials?
 - QCD FOPT? Schwarz, Stuke, 2009
 - GW signal:

Caprini, Durrer, Siemens, 2009

Questions for Lattice

- Dynamics of PT known from lattice?
 - Latent heat
 - Bubble nucleation rate

I'd be happy to collaborate!

- Dependence on $N_d,\ n_f$
- theta param, chem. potentials?
- At least some of this is known AFAIK
- For Cosmology: $T < T_C$ relevant

Gravitational Wave spectra from FOPT

Cosmological Phase Transitions

 Early Universe in symmetric phase (e.g. unbroken electroweak symmetry)

GWs from PTs

First order PT → Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

Signal is Universal

- PT characterised by few parameters:
 - Latent heat $\alpha pprox \frac{\Omega_{\mathrm{vacuum}}}{\Omega_{\mathrm{rad}}}$
 - Bubble wall velocity ${oldsymbol v}$
 - Bubble nucleation rate β
 - PT temperature T_{st}
- Three physical contributions
 - Bubble wall collisions
 - Turbulence
 - Sound waves

Extensive numerical simulations. Recently e.g. Hindmarsh et al: Sound wave contributions

Phenomenological Parameterisations: Caprini et al, 1512.06239

GW signal

Peak Frequency

Redshift:

$$f = \frac{a_*}{a_0} H_* \frac{f_*}{H_*} = 1.59 \times 10^{-7} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \times \left(\frac{T_*}{1 \text{ GeV}}\right) \times \frac{f_*}{H_*}$$

• Peak regions: $k/\beta \approx (1-10)$

PT Temperature ~ DM Mass

$$f_{\text{peak}}^{(B)} = 3.33 \times 10^{-8} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \text{ GeV}}\right) \left(\frac{\beta}{\mathcal{H}_*}\right)$$

Experiments

Summary

- Symmetry breaking with first order PT →
 Gravitational Waves!
- Signal from composite DM sector could be observable
- Interesting tasks for numerical (lattice) simulations
 - PT dynamics for strongly coupled models
 - PT non-perturbative sometimes even for weakly coupled models
 - Simulation of GW signal from PT

GWs as window to dark matter sector

Motivation for (non-abelian) Dark Sectors

Phase Transition of SU(N) Theories

GW Signals from PTRs to ELISA

Based on PRL 115 (2015) 18, 181101

Dark Matter

We have seen DM in the sky:

But no direct observation

Maybe DM is just part of a larger dark sector

- Example: Proton is massive, stable, composite state
- DM self interactions solve structure formation problems
- New signals, new search strategies!

Composite DM

- SU(N) dark sector with neutral "dark quarks"
- Confinement scale

 $\Lambda_{
m darkQCD}$

DM is composite "dark proton"

Bai, PS, PRD 89, 2014 PS, Stolarski, Weiler, JHEP 2015

many other works!

Similar setup e.g.: Blennow et al; Cohen et al; Frandsen et al;

Reviews: Petraki & Volkas, 2013; Zurek, 2013;

DM Motivation

- New mechanisms for relic density, extend mass range:
 - Asymmetric DM GeV-TeV scale
 - Strong Annihilation 100 TeV scale
 - SIMP MeV scale
 Hochberg, Kuflik, Volansky, Wacker, 2014; + Murayama, 2015
- Advantages of Composite
 - DM mass scale and stability
 - Fast annihilation for ADM
 - Self-interactions for structure formation

GW spectra

- Lot of work on GW from 1st order PT
 - Still difficult to simulate or model

See talks by Hindmarsh, Weir for more details

- Here in addition:
 - Transition is non-perturbative
 - Parameters not known take an optimistic guess

$$\beta/H_* = 1 - 100$$

$$v = 1$$

$$\frac{\kappa\alpha}{1 + \alpha} = 0.1$$